Polar molecules with three-body interactions on the honeycomb lattice
نویسندگان
چکیده
منابع مشابه
Three-body interactions with cold polar molecules
Fundamental interactions between particles, such as the Coulomb law, involve pairs of particles, and our understanding of the plethora of phenomena in condensed-matter physics rests on models involving effective two-body interactions. On the other hand, exotic quantum phases, such as topological phases or spin liquids, are often identified as ground states of hamiltonians with threeor more-body...
متن کاملThermal phase transitions in a honeycomb lattice gas with three-body interactions.
We study the thermal phase transitions in a classical (hard-core) lattice gas model with nearest-neighbor three-body interactions on the honeycomb lattice, based on parallel tempering Monte Carlo simulations. This system realizes incompressible low-temperature phases at fractional fillings of 9/16, 5/8, and 3/4 that were identified in a previous study of a related quantum model. In particular, ...
متن کاملSolids and supersolids of three-body interacting polar molecules on an optical lattice.
We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by Büchler et al. [Nature Phys. 3, 726 (2007)]. To this end, quantum Monte Carlo simulations, exact diagonalization, and a semiclassical approach are used to explore hard-core bosons on the 2D square lattice which interact solely by long-ranged thr...
متن کاملKitaev honeycomb and other exotic spin models with polar molecules
We show that ultracold polar molecules pinned in an optical lattice can be used to access a variety of exotic spin models, including the Kitaev honeycomb model. Treating each molecule as a rigid rotor, we use DC electric and microwave fields to define superpositions of rotational levels as effective spin degrees of freedom, while dipole-dipole interactions give rise to interactions between the ...
متن کاملAntiferromagnet on the Honeycomb Lattice
We study the q-state Potts antiferromagnet with q = 3 on the honeycomb lattice. Using an analytic argument together with a Monte Carlo simulation, we conclude that this model is disordered for all T ≥ 0. We also calculate the ground state entropy to be S0/kB = 0.507(10) and discuss this result. ∗email: [email protected] ∗∗email: [email protected] The effect of ground s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2010
ISSN: 1367-2630
DOI: 10.1088/1367-2630/12/5/053027